Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38535449

RESUMO

The anti-inflammatory effect of the ethanol extract of Sargassum yezoense and its fractions were investigated in this study. The ethanol extract exhibited a strong anti-inflammatory effect on lipopolysaccharide-stimulated RAW 264.7 macrophages and effectively suppressed the M1 polarization of murine bone-marrow-derived macrophages stimulated by lipopolysaccharides and IFN-γ (interferon-gamma). Through a liquid-liquid extraction process, five fractions (n-hexane, chloroform, ethyl acetate, butanol, and aqueous) were acquired. Among these fractions, the chloroform fraction (SYCF) was found to contain the highest concentration of phenolic compounds, along with two primary meroterpenoids, sargahydroquinoic acid (SHQA) and sargachromenol (SCM), and exhibit significant antioxidant capacity. It also demonstrated a robust anti-inflammatory effect. A direct comparison was conducted to assess the relative contribution of SHQA and SCM to the anti-inflammatory properties of SYCF. The concentrations of SHQA and SCM tested were determined based on their relative abundance in SYCF. SHQA contributed to a significant portion of the anti-inflammatory property of SYCF, while SCM played a limited role. These findings not only highlight the potential of the chloroform-ethanol fractionation approach for concentrating meroterpenoids in S. yezoense but also demonstrate that SHQA and other bioactive compounds work additively or synergistically to produce the potent anti-inflammatory effect of SYCF.


Assuntos
Alcenos , Benzopiranos , Benzoquinonas , Sargassum , Animais , Camundongos , Clorofórmio , Etanol , Lipopolissacarídeos
2.
Mar Drugs ; 21(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888467

RESUMO

Macrophages play an important role in managing the onset and progression of chronic inflammatory diseases. The primary objective of this study is to explore the antioxidant potential and anti-inflammatory properties of Sargassum hemiphyllum ethanol extract (SHE) and its fraction. SHE and its five constituent fractions were assessed for overall antioxidant capabilities and inhibitory effects on LPS-induced inflammation by modulating macrophages polarization in both RAW 264.7 macrophages and bone-marrow-derived macrophages (BMDM). Among the organic solvent fractions of SHE, the ethyl acetate fraction displayed the highest total phenolic content and total antioxidant capacity. Notably, the n-hexane (Hex) fraction showed the most substantial suppression of LPS-induced tumor necrosis factor α secretion in BMDM among the five fractions of SHE. The SHE and Hex fraction significantly reduced the heightened expression of pro-inflammatory cytokines and inflammation-inducible enzymes induced by LPS in RAW 264.7 macrophages. In particular, the SHE and Hex fraction inhibited M1 macrophage polarization by reducing the mRNA expression of M1 macrophage markers in macrophages that were polarized toward the M1 phenotype. Furthermore, the SHE and Hex fraction attenuated the induction in nuclear factor E2-related factor 2 and its target genes, which was accompanied by an alteration in antioxidant gene expression in M1-polarized BMDM. The findings suggest that both SHE and its Hex fraction exhibit inhibitory effects on LPS-triggered inflammation and oxidative stress by modulating the polarization of M1 macrophages within macrophage populations.


Assuntos
Lipopolissacarídeos , Sargassum , Humanos , Animais , Camundongos , Antioxidantes/metabolismo , China , Etnicidade , Macrófagos , Células RAW 264.7 , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo
3.
Nutrients ; 14(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35684079

RESUMO

Fucoxanthin (FCX) is a xanthophyll carotenoid present in brown seaweed. The goal of this study was to examine whether FCX supplementation could attenuate obesity-associated metabolic abnormalities, fibrosis, and inflammation in two diet-induced obesity (DIO) mouse models. C57BL/6J mice were fed either a high-fat/high-sucrose/high-cholesterol (HFC) diet or a high-fat/high-sucrose (HFS) diet. The former induces more severe liver injury than the latter model. In the first study, male C57BL/6J mice were fed an HFC diet, or an HFC diet containing 0.015% or 0.03% (w/w) FCX powder for 12 weeks to develop obesity-induced nonalcoholic steatohepatitis (NASH). In the second study, mice were fed an HFS diet or an HFS diet containing 0.01% FCX powder for 8 weeks. FCX did not change body weight gain and serum lipid profiles compared to the HFC or HFS controls. No significant differences were present in liver triglyceride and total cholesterol, hepatic fat accumulation, and serum alanine aminotransferase levels between control and FCX-fed mice regardless of whether they were on an HFC or HFS diet. FCX did not mitigate mRNA abundance of genes involved in lipid synthesis, cholesterol metabolism, inflammation, and fibrosis in the liver and white adipose tissue, while hepatic fatty acid ß-oxidation genes were significantly elevated by FCX in both HFC and HFS feeding studies. Additionally, in the soleus muscle, FCX supplementation significantly elevated genes that regulate mitochondrial biogenesis and fatty acid ß-oxidation, concomitantly increasing mitochondrial DNA copy number, compared with HFC. In summary, FCX supplementation had minor effects on hepatic and white adipose inflammation and fibrosis in two different DIO mouse models.


Assuntos
Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Animais , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Fibrose , Hiperlipidemias/metabolismo , Inflamação/metabolismo , Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Pós , Sacarose/farmacologia , Xantofilas/metabolismo , Xantofilas/farmacologia
4.
J Nutr Biochem ; 107: 109058, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35643283

RESUMO

Nicotinamide riboside (NR) is a nicotinamide adenine dinucleotide (NAD+) precursor. We previously reported that NR supplementation prevented the development of liver fibrosis in male mice. However, whether NR exerts a similar effect in females is unknown. Therefore, we determined whether NR supplementation can prevent obesity-induced inflammation and fibrosis in the liver and white adipose tissue (WAT) by providing NAD+ in obese female mice. Female C57BL/6J mice at the age of 8 weeks (young) and 16 weeks (old) were fed a high-fat/high-sucrose/high-cholesterol diet (HF) or HF diet supplemented with NR at 400 mg/kg/d for 20 weeks. While NR had minor effects in young female mice, it significantly reduced body weight gain, fat mass, glucose intolerance, and serum cholesterol levels compared to the HF group in old females. Hepatic NAD+ level tended toward an increase in the NR group (P=.054), but NR did not attenuate serum alanine aminotransferase levels, steatosis, and liver fibrosis in old female mice. However, NR decreased weight and adipocyte size in gonadal WAT (gWAT) of old females. NR also reduced the number of crown-like structures and the expression of inflammatory genes, along with decreases in fibrogenic gene expression and collagen accumulation in gWAT compared with the HF group. Also, old mice fed NR showed increased metabolic rates, physical activity, and energy expenditure compared with the HF. Thus, our results indicated that NR supplementation exerted an anti-obesity effect and prevented the development of inflammation and fibrosis in the WAT of old, but not young, female mice with diet-induced obesity.


Assuntos
Tecido Adiposo Branco , NAD , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Suplementos Nutricionais , Feminino , Inflamação/metabolismo , Inflamação/prevenção & controle , Fígado/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NAD/metabolismo , Niacinamida/análogos & derivados , Obesidade/etiologia , Obesidade/prevenção & controle , Compostos de Piridínio
5.
Nutrients ; 14(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35565869

RESUMO

Hepatic stellate cells (HSC) play a major role in developing liver fibrosis. Upon activation during liver injury, activated HSC (aHSC) increase cell proliferation, fibrogenesis, contractility, chemotaxis, and cytokine release. We previously showed that aHSC have increased mitochondrial respiration but decreased glycolysis compared to quiescent HSC (qHSC). We also demonstrated that fucoxanthin (FCX), a xanthophyll carotenoid, has an anti-fibrogenic effect in HSC. The objective of this study was to investigate whether FCX attenuates metabolic reprogramming occurring during HSC activation. Mouse primary HSC were activated in the presence or absence of FCX for seven days. aHSC displayed significantly decreased glycolysis and increased mitochondrial respiration compared to qHSC, which was ameliorated by FCX present during activation. In addition, FCX partially attenuated the changes in the expression of genes involved in glycolysis and mitochondrial respiration, including hexokinase 1 (Hk1), Hk2, peroxisome proliferator-activated receptor γ coactivator 1ß, and pyruvate dehydrogenase kinase 3. Our data suggest that FCX may prevent HSC activation by modulating the expression of genes crucial for metabolic reprogramming in HSC.


Assuntos
Células Estreladas do Fígado , Xantofilas , Animais , Metabolismo Energético , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Camundongos , Xantofilas/metabolismo , Xantofilas/farmacologia
6.
J Lipid Res ; 63(4): 100192, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35278409

RESUMO

Oral and gut Bacteroidetes produce unique classes of serine-glycine lipodipeptides and glycine aminolipids that signal through host Toll-like receptor 2. These glycine lipids have also been detected in human arteries, but their effects on atherosclerosis are unknown. Here, we sought to investigate the bioactivity of bacterial glycine lipids in mouse models of atherosclerosis. Lipid 654 (L654), a serine-glycine lipodipeptide species, was first tested in a high-fat diet (HFD)-fed Ldlr-/- model of atherosclerosis. Intraperitoneal administration of L654 over 7 weeks to HFD-fed Ldlr-/- mice resulted in hypocholesterolemic effects and significantly attenuated the progression of atherosclerosis. We found that L654 also reduced liver inflammatory and extracellular matrix gene expression, which may be related to inhibition of macrophage activation as demonstrated in vivo by lower major histocompatibility complex class II gene expression and confirmed in cell experiments. In addition, L654 and other bacterial glycine lipids in feces, liver, and serum were markedly reduced alongside changes in Bacteroidetes relative abundance in HFD-fed mice. Finally, we tested the bioactivities of L654 and related lipid 567 in chow-fed Apoe-/- mice, which displayed much higher fecal glycine lipids relative to HFD-fed Ldlr-/- mice. Administration of L654 or lipid 567 for 7 weeks to these mice reduced the liver injury marker alanine aminotransferase, but other effects seen in Ldlr-/- were not observed. Therefore, we conclude that conditions in which gut microbiome-derived glycine lipids are lost, such as HFD, may exacerbate the development of atherosclerosis and liver injury, whereas correction of such depletion may protect from these disorders.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Animais , Aterosclerose/genética , Bactérias , Bacteroidetes , Dieta Hiperlipídica/efeitos adversos , Glicina/farmacologia , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serina
7.
Nutrients ; 14(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35267937

RESUMO

We previously demonstrated that astaxanthin (ASTX), a xanthophyll carotenoid, has an antifibrogenic effect in hepatic stellate cells (HSC), primarily responsible for the accumulation of extracellular matrix protein during the development of liver fibrosis. Studies have shown that microRNAs (miRNAs) are involved in HSC activation. Therefore, we analyzed the expression of 84 miRNAs using miRNA arrays in primary mouse quiescent HSC (qHSC) and activated HSC (aHSC) treated with/without ASTX during their activation. Compared with qHSC, the expression of 14 miRNAs and 23 miRNAs was increased and decreased by more than 2-fold, respectively, in aHSC. Among the 14 miRNAs increased in aHSC, the expression of miR-192-5p, miR-382-5p, and miR-874-3p was reduced by ASTX. In addition, ASTX increased the expression of miR-19a-3p, miR-19b-3p, and miR-101a-3p among 23 miRNAs decreased in aHSC. Moreover, we confirmed miR-382-5p expression was ~15-fold higher in aHSC than qHSC, and ASTX markedly inhibited the induction measured by quantitative real-time PCR. We identified that the expression of Baz1a and Zfp462 from the predicted miR-382-5p target genes was significantly reduced in aHSC while increased by ASTX treatment similar to the levels in qHSC. The roles of Baz1a and Zfp462 in HSC activation and the antifibrogenic effect of ASTX need to be further investigated.


Assuntos
Células Estreladas do Fígado , MicroRNAs , Animais , Proteínas de Ligação a DNA/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/prevenção & controle , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Xantofilas/metabolismo , Xantofilas/farmacologia
8.
J Nutr Biochem ; 99: 108852, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525389

RESUMO

This study aimed to develop a well-characterized mouse model of alcoholic hepatitis (AH) regression. Male C57BL/6J mice were fed a Lieber-DeCarli (LD) control diet or LD containing 5% ethanol for ten days followed by one binge, which is the chronic-binge model of AH developed by the National Institute on Alcohol Abuse and Alcoholism. To determine AH regression, mice previously exposed to ethanol were put on LD control diet and metabolic and inflammatory features were monitored weekly for three weeks. Serum alcohol, total cholesterol, and alanine transaminase levels were increased in ethanol-fed mice, which declined to those of no ethanol controls within one and three weeks after ethanol withdrawal, respectively. Serum malondialdehyde was increased with ethanol feeding, but it was restored to no ethanol control levels within one week. Ethanol-induced changes in the hepatic expression of genes involved in lipogenesis, fatty acid oxidation, ethanol metabolism, and antioxidant response were restored to those of no ethanol controls after 3 weeks of ethanol withdrawal. Also, ethanol-induced hepatic inflammation was gradually decreased during the 3 weeks of ethanol withdrawal. Hepatic nicotinamide adenine dinucleotide (NAD+) levels and the expression of enzymes involved in the NAD+ salvage pathway were decreased by ethanol feeding, which was mitigated after ethanol withdrawal. Ethanol significantly lowered hepatic sirtuin 1 expression, but its levels were restored with ethanol cessation. This study established a mouse model of AH regression, which can be used as a preclinical model to study the potential of dietary bioactives or therapeutic agents on AH regression.


Assuntos
Alcoolismo/complicações , Etanol/efeitos adversos , Fígado Gorduroso/metabolismo , Hepatite Alcoólica/metabolismo , NAD/metabolismo , Estresse Oxidativo , Animais , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/imunologia , Hepatite Alcoólica/etiologia , Hepatite Alcoólica/genética , Hepatite Alcoólica/imunologia , Humanos , Fígado/imunologia , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sirtuína 1/genética , Sirtuína 1/metabolismo
9.
J Pathol ; 255(3): 319-329, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34374436

RESUMO

Epigenetic regulation in macrophages plays a crucial role in the inflammatory response of cells. We investigated the role of macrophage histone deacetylase 4 (HDAC4) in diet-induced obesity and non-alcoholic steatohepatitis using macrophage-specific Hdac4 knockout mice (Hdac4MKO ). Hdac4 floxed control (Hdac4fl/fl ) and Hdac4MKO mice were fed a regular chow diet or an obesogenic high-fat/high-sucrose/high-cholesterol (HF/HS/HC) diet for 12 weeks. The loss of macrophage Hdac4, compared with Hdac4fl/fl control, aggravated the diet-induced inflammation in the liver and white adipose tissue only in male mice. Splenic monocytes isolated from male mice fed the HF/HS/HC diet showed increased lipopolysaccharide (LPS) sensitivity and decreased Ly6C-/Ly6C+ ratios in male Hdac4MKO mice, but not in females. Bone marrow-derived macrophages (BMMs) from male Hdac4MKO mice had a lesser efferocytotic capacity but higher proinflammatory gene expression upon LPS stimulation than male Hdac4fl/fl mice. However, female Hdac4MKO BMMs exhibited the opposite responses. The induction of estrogen receptor α (ERα, Esr1) expression by LPS was less in male but more in female Hdac4MKO BMMs than Hdac4fl/fl BMMs. Moreover, overexpression of human HDAC4 decreased basal expression of Esr1 and abolished its induction by LPS. Inhibition of ERα increased Hdac4 with induction of inflammatory genes, whereas activation of ERα decreased Hdac4 with reduction of inflammatory genes in male and female Hdac4fl/fl BMMs treated with LPS. However, regardless of the inhibition or activation of ERα, proinflammatory genes were induced by LPS more in male Hdac4MKO BMMs than Hdac4fl/fl cells, whereas cells in females showed opposite responses. In conclusion, this study suggests that the lack of macrophage Hdac4 aggravates hepatic and white adipose inflammation in male mice with diet-induced obesity and non-alcoholic steatohepatitis, and not in female mice. HDAC4 and ERα appear to counteract each other, but ERα may not be a major player in sex-dependent inflammatory responses in macrophages deficient in HDAC4. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Histona Desacetilases/metabolismo , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Caracteres Sexuais , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Inflamação/patologia , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout
10.
J Nutr Biochem ; 97: 108799, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34119629

RESUMO

Nonalcoholic steatohepatitis (NASH), closely associated with obesity, is a health concern worldwide. We investigated whether the consumption of U.S.-grown sugar kelp (Saccharina latissima), an edible brown alga, can prevent obesity-associated metabolic disturbances and NASH in a mouse model of diet-induced NASH. Male C57BL/6J mice were fed a low-fat diet, a high-fat/high-sucrose/high-cholesterol diet (HF), or a HF diet containing sugar kelp (HF-Kelp) for 14 weeks. HF-Kelp group showed lower body weight with increased O2 consumption, CO2 production, physical activity, and energy expenditure compared with the HF. In the liver, there were significant decreases in weight, triglycerides, total cholesterol, and steatosis with HF-Kelp. The HF-Kelp group decreased hepatic expression of a macrophage marker adhesion G protein-coupled receptor E1 (Adgre1) and an M1 macrophage marker integrin alpha x (Itgax). HF-Kelp group also exhibited decreased liver fibrosis, as evidenced by less expression of fibrogenic genes and collagen accumulation than those of HF group. In epididymal white adipose tissue (eWAT), HF-Kelp group exhibited decreases in eWAT weight and adipocyte size compared with those of the HF. HF-Kelp group showed decreased expression of collagen type VI alpha 1 chain, Adgre1, Itgax, and tumor necrosis factor α in eWAT. We demonstrated, for the first time, that the consumption of U.S-grown sugar kelp prevented the development of obesity and its associated metabolic disturbances, steatosis, inflammation, and fibrosis in the liver and eWAT of a diet-induced NASH mouse model.


Assuntos
Dieta , Hepatite/prevenção & controle , Kelp , Cirrose Hepática/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Hepatite/etiologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Cirrose Hepática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/prevenção & controle , Consumo de Oxigênio , Triglicerídeos
11.
Nutrients ; 13(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072678

RESUMO

The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.


Assuntos
Anti-Inflamatórios , Antioxidantes , Produtos Biológicos , Doenças Metabólicas , Animais , Suplementos Nutricionais , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Camundongos , Nanopartículas , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos
13.
J Med Food ; 24(6): 586-594, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33751905

RESUMO

Obesity-induced inflammation in adipose tissue (AT) promotes the development of metabolic dysregulations by increasing macrophage recruitment in the stromal vascular fraction (SVF). The activation of nuclear factor-κB (NF-κB) signaling in macrophages serves as a pivotal mediator of AT inflammatory responses by increasing the expression of proinflammatory genes in obesity. Given the purported anti-inflammatory effects of berry consumption in humans, we evaluated if anthocyanin-rich aronia berry extract (ARN) can prevent obesity-induced AT inflammation in vivo. We also examined whether ARN suppresses lipopolysaccharide (LPS)-induced NF-κB activation in RAW 264.7 macrophages and mouse bone marrow-derived macrophages (BMDMs). Male C57BL/6J mice were fed a low-fat diet, a high-fat (HF), and high-sucrose (HS) diet or HF/HS diet supplemented with 0.2% ARN (HF/HS + ARN) for 14 weeks. Compared to HF-/HS-fed mice, ARN supplementation tended to decrease fasting serum glucose (P = .07). Furthermore, ARN supplementation significantly inhibited the phosphorylation of NF-κB p65 in epididymal AT with a concomitant decrease in the expression of Cd11b and Tnfα mRNAs in epididymal SVF isolated, compared with those from HF-/HS-fed mice. Consistent with these in vivo findings, ARN treatment significantly decreased the phosphorylation of p65 in LPS-stimulated RAW 264.7 macrophages and BMDMs. Moreover, ARN suppressed LPS-induced mRNA expression of inflammation mediators (iNos, Cox-2, Tnfα, Mcp-1, and Il-6) and glycolysis markers (Glut1, G6pdh, and Hk1) in both cell types. Taken together, our in vivo and in vitro results suggest that ARN supplementation may attenuate obesity-induced AT inflammation by inhibiting NF-κB signaling and glycolytic pathway in macrophages.


Assuntos
NF-kappa B , Photinia , Tecido Adiposo , Animais , Antocianinas , Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/genética , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Extratos Vegetais/farmacologia , Sacarose
14.
Eur J Nutr ; 60(6): 3315-3324, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33598775

RESUMO

PURPOSE: Anti-inflammatory and antioxidant effects of fucoxanthin (FCX), a xanthophyll carotenoid, have been suggested. However, underlying mechanisms are elusive. The objective of this study was to elucidate the mechanisms by which FCX and its metabolites inhibit lipopolysaccharide (LPS)-induced inflammation and oxidative stress in macrophages. METHODS: The effects of the FCX on mRNA and protein expression of pro-inflammatory cytokines and antioxidant genes, and reactive oxygen species (ROS) accumulation were determined in RAW 264.7 macrophages. A potential role of FCX in the modulation of phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear E2-related factor 2 (NRF2) axis was evaluated. RESULTS: FCX significantly decreased LPS-induced interleukin (Il)6, Il1b, and tumor necrosis factor α (Tnf) mRNA abundance and TNFα secretion. FCX attenuated LPS or tert-butyl-hydroperoxide-induced ROS accumulation with concomitant increases in the expression of antioxidant enzymes. Also, trolox equivalent antioxidant capacity assay demonstrated that FCX had a potent free radical scavenging property. FCX markedly increased nuclear translocation of NRF2 in LPS-treated macrophages, consequently inducing its target gene expression. Interestingly, the effect of FCX on NRF2 nuclear translocation was noticeably diminished by LY294002, an inhibitor of PI3K, but not by inhibitors of mitogen-activated protein kinases. Phosphorylation of AKT, a downstream element of PI3K, was also markedly increased by FCX. FCX metabolites, such as fucoxanthinol and amarouciaxanthin A, significantly attenuated LPS-induced ROS accumulation and pro-inflammatory cytokine expression. CONCLUSION: FCX exerts anti-inflammatory and antioxidant effects by the activation of NRF2 in the macrophages activated by LPS, which is mediated, at least in part, through the PI3K/AKT pathway.


Assuntos
Lipopolissacarídeos , Fator 2 Relacionado a NF-E2 , Humanos , Inflamação/tratamento farmacológico , Macrófagos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Xantofilas/farmacologia
15.
Br J Nutr ; 126(2): 183-190, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33059793

RESUMO

Lipid metabolism and inflammation contribute to CVD development. This study investigated whether the consumption of cranberries (CR; Vaccinium macrocarpon) can alter HDL metabolism and prevent inflammation in mice expressing human apo A-I transgene (hApoAITg), which have similar HDL profiles to those of humans. Male hApoAITg mice were fed a modified American Institute of Nutrition-93M high-fat/high-cholesterol diet (16 % fat, 0·25 % cholesterol, w/w; n 15) or the high-fat/high-cholesterol diet containing CR (5 % dried CR powder, w/w, n 16) for 8 weeks. There were no significant differences in body weight between the groups. Serum total cholesterol, non-HDL-cholesterol and TAG concentrations were significantly lower in the control than CR group with no significant differences in serum HDL-cholesterol and apoA-I. Mice fed CR showed significantly lower serum lecithin-cholesterol acyltransferase activity than the control. Liver weight and steatosis were not significantly different between the groups, but hepatic expression of genes involved in cholesterol metabolism was significantly lower in the CR group. In the epididymal white adipose tissue (eWAT), the CR group showed higher weights with decreased expression of genes for lipogenesis and fatty acid oxidation. The mRNA abundance of F4/80, a macrophage marker and the numbers of crown-like structures were less in the CR group. In the soleus muscle, the CR group also demonstrated higher expression of genes for fatty acid ß-oxidation and mitochondrial biogenesis than those of the control. In conclusion, although CR consumption elicited minor effects on HDL metabolism, it prevented obesity-induced inflammation in eWAT with concomitant alterations in soleus muscle energy metabolism.


Assuntos
Frutas , Hipercolesterolemia , Hiperlipidemias , Metabolismo dos Lipídeos , Vaccinium macrocarpon , Animais , Apolipoproteína A-I/genética , Colesterol na Dieta/administração & dosagem , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Extratos Vegetais/metabolismo
16.
J Nutr Biochem ; 85: 108463, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32891893

RESUMO

The objective of this study was to develop a well-characterized mouse model of nonalcoholic steatohepatitis (NASH) with a strong manifestation of liver fibrosis. The progression of metabolic, inflammatory and fibrotic features of this mouse model was monitored by performing in vivo time-course study. Male C57BL/6J mice were fed a high-fat/high-sucrose/high-cholesterol diet (34% fat, 34% sucrose and 2.0% cholesterol, by weight) for 2, 4, 6, 8, 10, 12, 14 or 16 weeks to induce obesity-associated metabolic dysfunctions, inflammation and fibrosis in the liver and white adipose tissue (WAT). Body and liver weights were gradually increased with significant hepatic triglyceride accumulation, i.e., liver steatosis, and marked elevation of serum alanine transaminase levels at week 10. While hepatic inflammation was displayed with the highest expression of macrophage markers and M1 markers at week 6, liver fibrosis determined by collagen accumulation was continuously increased to week 16. In epididymal WAT, weights and adipocyte size peaked at week 6-8. The increased expression of fibrogenic genes preceded inflammatory features (week 2 to 6 vs. week 6 to 16), suggesting that early fibrosis may trigger inflammatory events in the WAT. This study established a mouse model of diet-induced NASH with a strong manifestation of liver fibrosis. This mouse model will be a valuable in vivo tool in studying the pathophysiology of NASH and also in testing preventive and therapeutic potentials of dietary components and drugs against NASH with liver fibrosis.


Assuntos
Inflamação/metabolismo , Cirrose Hepática/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/patologia , Fígado/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia
17.
Food Sci Biotechnol ; 29(7): 977-985, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32582460

RESUMO

St. Paul's Wort (Siegesbeckia orientalis L.) confers anti-oxidative, anti-inflammatory, anti-allergic, anti-infertility, and immunosuppressive properties. Here, we elucidated whether high hydrostatic pressure extract of St. Paul's Wort (SPW-HHPE) had anti-adipogenic activity. SPW-HHPE inhibited adipogenesis by reducing intracellular lipid accumulation. SPW-HHPE reduced the mRNA and protein expression of adipogenic regulatory factors [peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein alpha (C/EBPα), and sterol regulatory element binding protein-1c]. In addition, SPW-HHPE decreased the mRNA expression levels of lipogenic enzymes (fatty acid synthase and acetyl-CoA carboxylase) as well as adipocytokines (adiponectin and leptin). The inhibitory effect of SPW-HHPE on adipogenesis was mainly attributed to the enhancement of the Wnt/ß-catenin signaling pathway. When ß-catenin siRNA was transfected into 3T3-L1 adipocytes, the mRNA expression of PPARγ and C/EBPα was upregulated; however, their expression was attenuated by SPW-HHPE. These results suggest that SPW-HHPE suppresses adipogenesis by stimulating Wnt/ß-catenin pathway.

18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(11): 158618, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31931174

RESUMO

Fucoxanthin is a xanthophyll carotenoid abundant in macroalgae, such as brown seaweeds. When fucoxanthin is consumed, it can be esterified or hydrolyzed to fucoxanthinol in the gastrointestinal tract and further converted into amarouciaxanthin A in the liver. It has a unique chemical structure that confers its biological effects. Fucoxanthin has a strong antioxidant capacity by scavenging singlet molecular oxygen and free radicals. Also, it exerts an anti-inflammatory effect. Studies have demonstrated potential health benefits of fucoxanthin for the prevention of chronic diseases, such as cancer, obesity, diabetes mellitus, and liver disease. Animal studies have shown that fucoxanthin supplementation has no adverse effects. However, investigation of the safety of fucoxanthin consumption in humans is lacking. Clinical trials are required to assess the safety of fucoxanthin in conjunction with the study of mechanisms by which fucoxanthin exhibits its health benefits. This review focuses on current knowledge of metabolism and functions of fucoxanthin with its potential health benefits. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.


Assuntos
Antioxidantes/uso terapêutico , Doença Crônica/tratamento farmacológico , Obesidade/dietoterapia , Xantofilas/uso terapêutico , Diabetes Mellitus/dietoterapia , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias/dietoterapia , Obesidade/metabolismo , Alga Marinha/química , Xantofilas/química
19.
J Med Food ; 23(1): 29-36, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31532323

RESUMO

Muscle atrophy, which is characterized by a decrease in muscle mass, function, and protein content, can be caused by aging, disease, and physical inactivity. Red bean or Adzuki bean (Vigna angularis) has been consumed as an edible legume. Red bean possesses various functional properties, such as antidiabetes, antiaging, anti-inflammatory, anticancer, and hepatoprotective activities. However, little is known about its potential inhibitory effect on muscle atrophy. In this study, we investigated the inhibitory effect of red bean extract (RBE) on muscle atrophy in an immobilized hindlimb muscle of C57BL/6J mice. RBE dose-dependently increased grip strength, exercise endurance, muscle weight, and myofiber area. At the molecular level, RBE significantly reduced the mRNA expression of proteolysis-related genes, such as muscle ring finger and muscle atrophy F-box by preventing the translocation of Forkhead box 3. RBE also activated the phosphatidylinositol 3 kinase/Akt pathway, subsequently stimulating the mammalian target of rapamycin/70-kDa ribosomal protein S6 kinase/eukaryotic initiation factor 4E binding protein 1 pathway involved in protein synthesis. Overall, red bean could be used as a functional food ingredient or therapeutic agent to inhibit muscle atrophy.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Vigna/química , Aminoácidos de Cadeia Ramificada , Animais , Biomarcadores/análise , Fator de Iniciação 4E em Eucariotos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Restrição Física , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo
20.
J Med Food ; 22(11): 1159-1167, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31730422

RESUMO

Siegesbeckia orientalis has been reported to exhibit anti-allergic, anti-infertility, anti-inflammatory, anti-rheumatic, and immunosuppressive activities. However, there are very few studies describing its stimulatory effects on exercise capacity. This study elucidated whether S. orientalis extract (SOE) standardized to kirenol content can enhance exercise endurance by increasing mitochondrial biogenesis. SOE significantly improved the running distance and time in mice fed normal diet (ND) and high-fat diet (HFD). SOE also enhanced mitochondrial biogenesis by stimulating the mitochondrial regulatory genes including peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), and mitochondrial transcription factor A (TFAM) in the skeletal muscles of ND and HFD mice. Furthermore, SOE upregulated the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/PGC-1α/peroxisome proliferator-activated receptor delta (PPARδ) signaling pathway in the skeletal muscles of ND and HFD mice. Kirenol markedly increased adenosine triphosphate production and mitochondrial activity by stimulating the expression of markers of mitochondrial biogenesis and upregulating the AMPK/SIRT1/PGC-1α/PPARδ signaling pathway in L6 myotubes. These results show that SOE has the potential to be used to develop an exercise supplement capable of stimulating mitochondrial biogenesis through the AMPK/SIRT1/PGC-1α/PPARδ signaling pathway.


Assuntos
Asteraceae/química , Mitocôndrias/fisiologia , Biogênese de Organelas , Resistência Física , Extratos Vegetais/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal , Componentes Aéreos da Planta/química , Extratos Vegetais/normas , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...